在由等差数列的运算性质类比推理到等比数列的运算性质时:
加减运算类比推理为乘除运算,
累加类比为累乘,
故由“已知数列{a n}为等差数列,它的前n项和为S n,若存在正整数m,n(m≠n),使得S m=S n,则S m+n=0”.
类比推理可得:
“已知正项数列{b n}为等比数列,它的前n.项积为T n,若存在正整数m,n.(m≠n),使得T m=T n,则T m+n=1.
故答案为:它的前n.项积为T n,若存在正整数m,n.(m≠n),使得T m=T n,则T m+n=1.
在由等差数列的运算性质类比推理到等比数列的运算性质时:
加减运算类比推理为乘除运算,
累加类比为累乘,
故由“已知数列{a n}为等差数列,它的前n项和为S n,若存在正整数m,n(m≠n),使得S m=S n,则S m+n=0”.
类比推理可得:
“已知正项数列{b n}为等比数列,它的前n.项积为T n,若存在正整数m,n.(m≠n),使得T m=T n,则T m+n=1.
故答案为:它的前n.项积为T n,若存在正整数m,n.(m≠n),使得T m=T n,则T m+n=1.