因为Cn为an和bn的公共项,及cn中存在Ck=2^n=3m-1,则可以举例,当n=1时,有k=1,Ck=2,;n=2时,无m,当n=3时,m=3,Ck=8,以此类推可得,Ck=2,8,32,128.,可知Ck为等比数列,以C1=2,q=4,则Ck=2^(2n-1),前几项的和是(-2/3)(1-4^(n-1))
已知数列{an}的通项公式an=3n-1,数列{bn}的通项公式bn=2^n,设{an}与{bn}的公共项组成的新数列为
1个回答
相关问题
-
数列bn=2∧an,数列an的通项公式为3n-2,求数列bn的通项公式.
-
已知数列an的通项公式为an=2^(5-n),数列bn的通项公式为bn=n+k,设cn=bn(anbn),在数列{cn}
-
已知数列an的通项公式是an=3n-1 bn=2的n次方 设an和bn的公共项组成的新数列为Cn ,
-
设数列{an}的通项公式是2^n,数列{bn}的通项公式是2n-1,已知数列{Cn}=bn/an,求数列Cn的前n项和T
-
已知数列{an}的通项公式an已知数列{an}的通项公式an=(1+2+...+n)/n,bn=1/an·a(n+1),
-
已知数列{an}中,a1=2,an=a(n-1)+1,数列{bn}的通项公式为bn=2^(n+1),数列{an·bn}的
-
数列{an}的通项公式为an=dn+1,d0,数列{bn}的通项公式为bn=q^n,q>1.则集合{n |an=bn}元
-
数列按满足a1=1 a(n+1)=2^n-3an,设bn=an/2^n,求数列bn的递推公式 bn的通项公式an的通项公
-
设Sn是数列{an}前n项和,Sn=3/2an—3/2,又数列{Bn}的通项公式为bn=4n=3,求{an}的通项公式
-
设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通