已知函数f1(x)=2x−1x+1,对于n∈N*,定义fn+1(x)=f1[fn(x)],则f2011(x)=[2x−1

1个回答

  • 解题思路:函数对于n∈N*,定义fn+1(x)=f1[fn(x)],故f2(x)=f1[f1(x)]=f1([2x−1/x+1])=[x−1/x].f3(x)=f1([x−1/x])=[x−2/2x−1],f4(x)=f1([x−2/2x−1])=[1/1−x],f5(x)=f1([1/1−x])=[x+1/2−x],f6(x)=f1([x+1/2−x])=x,f7(x)=f1(x)=[2x−1/x+1].所以从f1(x)到f6(x),每6个一循环.由此能求出结果.

    ∵函数对于n∈N*,定义fn+1(x)=f1[fn(x)],

    ∴f2(x)=f1[f1(x)]=f1([2x−1/x+1])=

    2•

    2x−1

    x+1−1

    2x−1

    x+1+1=[x−1/x].

    f3(x)=f1[f2(x)]=f1([x−1/x])=

    2•

    x−1

    x−1

    x−1

    x+1=[x−2/2x−1],

    f4(x)=f1[f3(x)]=f1([x−2/2x−1])=

    2•

    x−2

    2x−1−1

    x−2

    2x−1+1=[1/1−x],

    f5(x)=f1[f4(x)]=f1([1/1−x])=

    2•

    1

    1−x−1

    1

    1−x+1=[x+1/2−x],

    f6(x)=f1[f5(x)]=f1([x+1/2−x])=

    2•

    x+1

    2−x−1

    x+1

    2−x+1=x,

    f7(x)=f1[f6(x)]=f1(x)=[2x−1/x+1]=f1(x).

    所以从f1(x)到f6(x),每6个一循环.

    ∵2011=335×6+1,

    ∴f2011(x)=f1(x)=

    2x−1

    x+1,

    故答案为:[2x−1/x+1].

    点评:

    本题考点: 函数的周期性.

    考点点评: 本题考查函数的周期性,是基础题.解题时要认真审题,解题的关键是得到从f1(x)到f6(x),每6个一循环.