答:
f'(x)+f(x)/x>0
1)x>0时,上式化为:xf'(x)+f(x)>0,即是:[xf(x)]'>0
2)xm(0)=0
g(x)=f(x)+1/x=[xf(x)+1]/x=[m(x)+1]/x
m(x)>0,所以:m(x)+1>1.
所以:g(x)不存在零点.
答:
f'(x)+f(x)/x>0
1)x>0时,上式化为:xf'(x)+f(x)>0,即是:[xf(x)]'>0
2)xm(0)=0
g(x)=f(x)+1/x=[xf(x)+1]/x=[m(x)+1]/x
m(x)>0,所以:m(x)+1>1.
所以:g(x)不存在零点.