微积分证明题 设函数f(x)在[0,1]上连续,且值域是[0,1],如何证明则在(0,1)内必有一点c,使得f(c)=c
1个回答
请翻阅罗尔定理的证明过程.
设极值点在定义域内,不妨设0
相关问题
高数题...设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点c∈(0,1),使得2f(c)
f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0,证明在(0,1)内存在一点c,使得f(c)+(1-e^-
微积分 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少
连续性问题,证明f在【0,1】上连续,且满足f(x)大于等于0,小于等于1.证明f有一个固定点c在【0,1】内,使得f(
设f(x)在【0,1】上连续,(0,1)可导.f(0)=0 ,f(1)=1.证明:存在C属于(0,1)使f(c)=1-c
高数证明题设函数在上有三阶连续导数,且f(0)=1,f(2)=2, f'(1)=0 证明:在(0,2)内至少有一点a ,
请教一道高数证明题?设f(x)在[0,1]上连续,f(0)=f(1).证明:对自然数n>=2,必有m属于(0,1),使得
设函数f(x)在[0,1]上连续且不恒为零,在(0,1)内可导,且f(0)=0,证明:存在ξ∈(0,1),使得f(ξ)f
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1
积分证明题设函数f(x)∈C[0,1]∩D(0,1),且f(0)=0,0<f'(x)<1,证明[∫(0,1)f(x)dx