n(n+1)(n+2) = 1/4(n+3 - (n-1))*n(n+1)(n+2)
= 1/4n(n+1)(n+2)(n+3) - 1/4(n-1)(n)(n+1)(n+2)
所以,原式=1/4*[1*2*3*4 - 0 + 2*3*4*5 - 1*2*3*4 +...+
n(n+1)(n+2)(n+3) - (n-1)(n)(n+1)(n+2)]
=1/4n(n+1)(n+2)(n+3)
n(n+1)(n+2) = 1/4(n+3 - (n-1))*n(n+1)(n+2)
= 1/4n(n+1)(n+2)(n+3) - 1/4(n-1)(n)(n+1)(n+2)
所以,原式=1/4*[1*2*3*4 - 0 + 2*3*4*5 - 1*2*3*4 +...+
n(n+1)(n+2)(n+3) - (n-1)(n)(n+1)(n+2)]
=1/4n(n+1)(n+2)(n+3)