证明:假设存在x0>0,
使|g(x)-g(x0)|<1/x 成立,即对任意x>0,
有 Inx<g(x0)<Inx+2/x ,(*)但对上述x0,取x1=eg(x0) 时,
有 Inx1=g(x0),这与(*)左边不等式矛盾,
因此,不存在x0>0,使|g(x)-g(x0)|<1/x 成立.
当然,方法不止一种,这种应该比较好的.若不懂,
证明:假设存在x0>0,
使|g(x)-g(x0)|<1/x 成立,即对任意x>0,
有 Inx<g(x0)<Inx+2/x ,(*)但对上述x0,取x1=eg(x0) 时,
有 Inx1=g(x0),这与(*)左边不等式矛盾,
因此,不存在x0>0,使|g(x)-g(x0)|<1/x 成立.
当然,方法不止一种,这种应该比较好的.若不懂,