存在
假设存在这样的等差数列an
设首项为a1,公差为d
an=a1+(n-1)d
Sn=na1+n(n-1)d/2
anSn=[a1+(n-1)d][na1+n(n-1)d/2]=2n^2(n+1)
根据三系系数可知d=2
∴anSn=[a1+2(n-1)][na1+n(n-1)]=n[2n+a1-2][n+a1-1]=n[2n^2+n(3a1-4)+(a1-1)(a1-2)]=n[2n^2+2n]
∴3a1-4=2
(a1-1)(a1-2)]=0
∴a1=2
即an=2+2(n-1)=2n
不懂可追问,望采纳