dy/dx=dy/dt/dx/dt=-sint/2t,d^2y/dx^2=(dy/dx)/dt/dx/dt=(-2tcost+2sint)/8t^3
高数微分问题,x = 1 + t^2 y = cos t d^2y / d^2x = ( )
1个回答
相关问题
-
设函数y=y(x)由参数方程 {x=cos t ; y=sin t - t cos t ; 所确定,求(d^2)y/(d
-
求微分的题目一道,x=e^(-t)sint,y=e^tcost,求 d^2y/dx^2
-
大一高数问题若y=f(t^2),且f''(x)存在,则dy\dt=,(d^2y)\dx^2d(2tf')/dt=2[f'
-
设f(x)为连续函数,F(t)=∫﹙1,t﹚d﹙y﹚∫(y,t)f(x)d(x)则F゜(2)=
-
x=e^(-t);y=te^t 则d^2y/dx^2=
-
求解微分方程组dx/dt=2cosy-cos(2t+y),dy/dt=2-[2cosy-sin(2t+y)]/x这个微分
-
设参数函数x=ln(1+t^2),y=t-arctant.求(d^2y)/(dx^2).
-
参数方程问题 (1)X=T^2+1/T^2 Y=T^2-1/T^2 (2)X=2/T+1 Y=T-2/T+1 化为普通方
-
x=(e^t)sint y=(e^t)cost 求d^2y/dx^2
-
1.求y=(cos x)^2的微分.2.求y=sin(x^2-1)的微分.