1. a=-1, f(x)=|x+1|+lnx
因为定义域为x>0,故f(x)=x+1+lnx
f'(x)=1+1/x>0, 所以f(x)在定义域x>0上都是单调递增.
2.f(x)在开区间既有最大又有最小值,因此f(x)在此区间至少有2个极值点.
f(x)=|x-a|+lnx
x>=a时,有f(x)=x-a+lnx, f'(x)=1+1/x>0, 最小值为f(a)=lna
0
1. a=-1, f(x)=|x+1|+lnx
因为定义域为x>0,故f(x)=x+1+lnx
f'(x)=1+1/x>0, 所以f(x)在定义域x>0上都是单调递增.
2.f(x)在开区间既有最大又有最小值,因此f(x)在此区间至少有2个极值点.
f(x)=|x-a|+lnx
x>=a时,有f(x)=x-a+lnx, f'(x)=1+1/x>0, 最小值为f(a)=lna
0