解题思路:(1)因为每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元)所以未超出7立方米时:y=x×(1+0.2);超出7立方米时:y=7×1.2+(x-7)×(1.5+0.4);
(2)分别求出当某户用水7立方米时和10立方米时的水费,假设50户都不超过7立方米,则最多共交420元.而实际交了541.6元,所以541.6-420=121.6,则多出部分为最少超过7立方米的各户用水,由此即可求出最少10立方的用户,从而求出答案.
(1)未超出7立方米时:y=x×(1+0.2)=1.2x;
超出7立方米时:y=7×1.2+(x-7)×(1.5+0.4)=1.9x-4.9;
(2)当某户用水7立方米时,水费8.4元.
当某户用水10立方米时,水费8.4+5.7=14.1元,
比7立方米多5.7元.
8.4×50=420元,
还差541.6-420=121.6元,
121.6÷5.7=21.33.
所以需要22户换成10立方米的,不超过7立方米的最多有28户.
附另
设未超过7m3的有x户,则超过7m3的有(50-x)户
由题意得:某户用水7立方米时,水费8.4元.
10立方米时,水费8.4+5.7=14.1元,
可列不等式:8.4x+14.1(50-x)>541.6,
解得x<28,
x最大可取28.
点评:
本题考点: 一次函数的应用.
考点点评: 本题首先读懂题意,然后根据题意列出函数关系式,再利用函数解析式即可解决实际问题.