由于cosz的零点为z=(n+1/2)π(n=0,±1,±2,…)
故在圆|z|=1区域内没有零点,因而1/cosz在|z|=1所围区域上解析.
导数(1/cosz)'=tanzsecz在|z|=1所围区域内处处存在,故其可微,因而解析.
|z|=1所围区域是单连通区域,而|z|=1是一条围线,由柯西积分定理可知∫(|z|=1)1/coszdz=0.
由于cosz的零点为z=(n+1/2)π(n=0,±1,±2,…)
故在圆|z|=1区域内没有零点,因而1/cosz在|z|=1所围区域上解析.
导数(1/cosz)'=tanzsecz在|z|=1所围区域内处处存在,故其可微,因而解析.
|z|=1所围区域是单连通区域,而|z|=1是一条围线,由柯西积分定理可知∫(|z|=1)1/coszdz=0.