解题思路:(1)根据垂线的性质,可得∠D=∠C=90°,根据余角的性质,可得∠EAD=∠BEC,根据全等三角形的判定与性质,可得AD=EC,DE=BC,根据线段的和差,等式的性质,可得答案;
(2)根据角平分线的性质,可得DE=EF=EC,根据HL,可得Rt△ADE≌Rt△AFE,△EBF≌Rt△EBC,根据全等三角形的性质,可得AD与AF的关系,BF与BC的关系,根据线段的和差,可得答案.
(1)证明:∵AD∥BC,CD⊥AD于D点,
∴∠D=∠C=90°.
∵∠EAD+∠AED=90°,∠AED+∠BEC=90°,
∴∠EAD=∠BEC.
在△AED和△EBC中,
∠EAD=∠BEC
∠D=∠C
AE=BE,
∴△AED≌△EBC(AAS),
∴AD=EC,DE=BC.
∵DE+EC=CD,
∴AD+BC=CD;
(2)证明:如图:作EF⊥AB于F,
,
∵AE,BE分别平分∠BAD和∠ABC,
∴∠EAD=∠EAF,∠EBF=∠EBC.
又∵EF⊥AB于F,
∴DE=EF=EC.
在Rt△ADE和Rt△AFE中,
AE=AE
ED=EF,
∴Rt△ADE≌Rt△AFE(HL),
∴AD=AF.
在Rt△EBF和Rt△EBC中,
EB=EB
EF=EC,
∴Rt△EBF≌Rt△EBC(HL),
∴BF=BC.
∵AF+FB=AB,
∴AD+BC=AB.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,角平分线的性质.