AD‖BC,
△AOD∽△COB,
S△AOD/S△COB=(AD/BC)^2=16/49,
设S△AOD=A,
S△COB=49A/16,
S△ABO/S△AOD=BO/OD,(二三角形等高),
而BO/OD=BC/AD=7/4,
S△ABO=7S△AOD/4=7A/4,
S△COD/S△BOC=OD/BO=AD/BC=4/7,
S△COD=4S△BOC/7=(49A/16)*4/7=7A/4,
A+49A/16+7A/4+7A/4=121,
121A/16=121,
A=16,
S△AOD=16,
S△AOB=16*7/4=28,
S△ABC=S△AOB+S△BOC=28+16*49/16=77.