解题思路:(1)用赋值法求f(0),在构造-x>0时对应的f(-x),可得x<0时,f(x)>1.
(2)利用定义来证,将f(x1)-f(x2)转化为[f(x1-x2)-1]•f(x2)再利用在R上f(x)>0即可.
(3)先利用f(-x2+6x-1)•f(y)=1找到x,y的关系y=x2-6x+1,再利用A∩B=∅,求出a.
(1)证明:∵f(m+n)=f(m)•f(n),m、n为任意实数,
取m=0,n=2,则有f(0+2)=f(0)•f(2)
∵当x>0时,0<f(x)<1,
∴f(2)≠0,∴f(0)=1
当x<0时,-x>0
∴0<f(-x)<1,则
1
f(-x)>1
取m=x,n=-x,则f(x-x)=f(0)=f(x)•f(-x)=1
则f(x-x)=f(0)=f(x)•f(-x)=1∴f(x)=
1
f(-x)>1(6分)
(2)证明:由(1)及题设可知,在R上f(x)>0设x1,x2∈R,且x1<x2,则x1-x2<0⇒f(x1-x2)>1∴f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)•f(x2)-f(x2)=[f(x1-x2)-1]•f(x2)(8分)
∵f(x1-x2)-1>0,f(x2)>0∴f(x1)-f(x2)>0即f(x1)>f(x2)
所以f(x)在R上是减函数(9分)
(3)在集合A中f(-x2+6x-1)•f(y)=1
由已知条件,有f(-x2+6x-1+y)=f(0)∴-x2+6x-1+y=0,即y=x2-6x+1(12分)
在集合B中,有y=a∵A∩B=∅,则抛物线y=x2-6x+1与直线y=a无交点∵y=x2-6x+1=(x-3)2-8,∴ymin=-8,∴a<-8
即a的取值范围是(-∞,-8)(15分)
点评:
本题考点: 抽象函数及其应用.
考点点评: 本题的第一和第二问考查的是抽象函数性质的证明.抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉条件,更不可臆造条件,推理过程要层次分明,书写规范.