答:
y=√[-(x²-6x+8)(x²-6x+5)]
=√(-[(x²-6x)²+13(x²-6x)+40])
=√(-[(x²-6x+13/2)²+40-169/4])
=√(-[(x²-6x+13/2)²-9/4])
=√(9/4-(x²-6x+13/2)²)
当x²-6x+13/2=0时,y有最大值√9/4=3/2
而x²-6x+13/2=0解为:x=(6±√10)/2.
所以当x满足x²-6x+13/2=0,即x=(6±√10)/2时,y有最大值为3/2.
答:
y=√[-(x²-6x+8)(x²-6x+5)]
=√(-[(x²-6x)²+13(x²-6x)+40])
=√(-[(x²-6x+13/2)²+40-169/4])
=√(-[(x²-6x+13/2)²-9/4])
=√(9/4-(x²-6x+13/2)²)
当x²-6x+13/2=0时,y有最大值√9/4=3/2
而x²-6x+13/2=0解为:x=(6±√10)/2.
所以当x满足x²-6x+13/2=0,即x=(6±√10)/2时,y有最大值为3/2.