1.
四边形有外接圆则对角互补
两坐标轴的夹角是直角
两直线的夹角和两坐标轴的夹角是四边形的对角
所以也是直角
所以两直线垂直
L1斜率=-1/3
所以L2斜率=-1/(-1/3)=3
L2,2Y=3TX-2
Y=(3T/2)X-1
所以3T/2=3
T=2
2.
l1:x+3y-12=0,l2:3tx-2y-2=0
四边形有一个直角顶点——坐标原点,
在坐标轴上的另外两个顶点的连线是直径,
不在坐标轴上的那个顶点——第四个顶点也必然是直角顶点,
因此要求两条直线互相垂直,即斜率互为负倒数:-1/3=-1/(3t/2),
得t=2,
所以l2:3x-y-1=0,
分别令x=0,y=0,得l1,l2与坐标轴的交点为:A(0,4),B(12,0),C(0,-1),D(1/3,0)l1,
l2联立求得其交点为:E(3/2,7/2)所以四边形顶点为O(0,0),A(0,4),E(3/2,7/2),D(1/3,0),|AD|²=(1/3-0)²+(0-4)²=145/9,所以半径平方为(|AD|/2)²=145/36,AD中点为圆心,其坐标为(1/6,2)所以园的方程为:
(x-1/6)²+(y-2)²=145/36