在数列{an}(n为写在a右下角的小n,1等同理)中,a1=1,a n+1=2an+2^n

1个回答

  • (1)∵a[n+1]=2a[n]+2^n,n∈N+

    ∴两边同除以2^n,得:

    a[n+1]/2^n-a[n]/2^(n-1)=1

    ∵a[1]=1

    bn=an/2^(n-1)

    故b(n+1)-bn=1

    ∴{bn}是首项为a[1]/2^0=1,公差也为1的等差数列

    即:a[n]/2^(n-1)=1+(n-1)=n

    ∴数列{an}的通项公式是:a[n]=n2^(n-1)

    (2)∵S[n]=1*2^0+2*2^1+3*2^2+...+n2^(n-1)

    ∴2S[n]=1*2^1+2*2^2+3*2^3+...+n2^(n)

    将上面两式相减,得:

    -S[n]=[2^0+2^1+2^2+2^3+...+2^(n-1)]-n2^n

    =1*(2^n-1)/(2-1)-n2^n

    =2^n-1-n2^n

    =(1-n)*2^n-1

    ∴数列{a[n]}的前n项和S[n]=(1-n)2^n-1