1、三角形ADF是等腰三角形
证明:
直角三角形BDE和直角三角形CFE中,∵∠B=∠C
∴∠BDE=∠EFC
∵∠BDE=∠FDA ∴∠FDA=∠F
2、D、E是BC边上的平分点.三角形ADE是等边三角形
证明:
∵顶角120度的等腰三角形两底角 ∴∠B=∠C=30°
∵AD⊥AC ∴∠ADC=60° 同理 ∠AEB=60° 三角形ADE内角和为180°
∴∠DAE=60° ∴AD=AE=DE ( 三角形ADE是等边三角形 )
∵∠BAD=∠ADE- ∠ABD=60°-30°=30° ∴ AD=BD 同理 AE=EC
∴BD=DE=EC (D、E是BC边上的平分点)