∫arcsin根号(x/1+x)dx

1个回答

  • 分步积分得∫arcsin{[x/(1+x)]^(1/2)}dx

    =xarcsin{[x/(1+x)]^(1/2)}

    -∫x/2[1-x/(x+1)]^(1/2)*[(x+1)/x]^(1/2)*dx/(x+1)^2

    =xarcsin{[x/(x+1)]^(1/2)}-∫x^(1/2)/2(x+1) dx

    =xarcsin{[x/(x+1)]^(1/2)}-∫t/2(t^2+1)*2tdt 设x=t^2

    =xarcsin{[x/(x+1)]^(1/2)}-∫[1-1/(t^2+1)]dt

    =xarcsin{[x/(x+1)]^(1/2)}-t+arctant+C

    arctant=arcsin{[x/(x+1)]^(1/2)}

    =(x+1)arcsin{[x/(x+1)]^(1/2)}-x^(1/2)+C