用点差法.
设A(x1,y1),B(x2,y2),AB中点(x0,y0),x0=(x1+x2)/2,y0=(y1+y2)/2,
x1^2/25-y1^2/16=1,(1),
x2^2/25-y2^2/16=1,(2),
(1)-(2)式,
16/25-[(y1-y2)/(x1-x2)]*[(y1+y2)/2]/[(x1+x2)/2]
(y1-y2)/(x1-x2)=k,(直线斜率),
16/25-k*y0/x0=0,
k=16/25,
∴直线方程为:(y-1)=(16/25)(x-1),
16x-25y+9=0.