零点定理证明f(x)在[0,1]连续,且f(0)=0,f(1)=3.证明:存在α∈(0,1),使f(α)=e^α
1个回答
构造:F(x)=f(x)-e^x
那么,
F(0)=0-1=-10
而且F为[0,1]上的连续函数
根据零点定理,
存在α∈(0,1),使F(α)=0,即:f(α)=e^α
有不懂欢迎追问
相关问题
设f(x)在[0,1]连续,且单调减少,f(x)>0,证明:对于满足0<α<β<1的任何α,β,有β∫α0f(x)dx>
设f'(x)存在,且αβ≠0,证明:lim[f(x0+α△x)-f(x0-β△x)/△x]=(α+β)f'(x0)
一道证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明存在t属于(0,1),使f'(
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0)=f(x0)+1/4
F(x,y,z)=0,证明:(αx/αy) (αz/αx )(αy/αz)=1
设0≤α≤1.求证:f(X)=x∧α在区间[0,+∞)上一致连续.
设f在0到1上连续且可导,3*定积分上1/3下0e^(1-x^2)f(x)dx=f(1),证明存在t在(0,1)使f'(
一个函数证明题设f(x)在[0,1]上单调递增且连续,f(0)>0,f(1)<1,试证:存在y∈(0,1),使f(y)=
设f(x)在【0,1】上连续,(0,1)可导.f(0)=0 ,f(1)=1.证明:存在C属于(0,1)使f(c)=1-c
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0.证明存在一点n属于 (0,1),使: