1.x1+x2=1 x1x2=(k+1)/4k(2x1-x2)(x1-2x2)=2x1^2-5x1x2+2x2^2=2(x1+x2)^2-9x1x2=2-9(k+1)/4k=-3/2 k=9/52.x1/x2+x2/x1-2
=(x1^2+x2^2-2x1x2)/(x1x2)
=[(x1+x2)^2-4x1x2]/(x1x2)
=[1-4*(k+1)/(4k)]/(k+1)/(4k)
=-4/(k+1)
要使x1/x2+x2/x1-2 的值为整数,只须k+1能整除4.而k为整数,
∴k+1只能取±1,±2,±4.又∵k<0,∴k+1<1,∴k+1只能取-1,-2,-4,∴k=-2,-3,-5.
∴能使x1/x2+x2/x1-2的值为整数的实数k的整数值为-2,-3和-5.