f(x)=2cos²x+√3sin2x
=cos2x+√3sin2x+1
=2sin(2x+π/6)+1
f(A)=2sin(2A+π/6)+1=2, 2A+π/6∈(π/6,13π/6)
A=π/3满足
b=1,S=√3/2 得出 三角形为RtΔ
a=√3 c=2 B=π/6 C=π/2
f(x)=2cos²x+√3sin2x
=cos2x+√3sin2x+1
=2sin(2x+π/6)+1
f(A)=2sin(2A+π/6)+1=2, 2A+π/6∈(π/6,13π/6)
A=π/3满足
b=1,S=√3/2 得出 三角形为RtΔ
a=√3 c=2 B=π/6 C=π/2