解题思路:根据四边形ABCD是矩形可得出∠BAD=∠D=90°,再根据相似三角形的判定定理可得出△ADE∽△BFA,由相似三角形的对应边成比例即可得出结论.
证明:∵四边形ABCD是矩形,
∴∠BAD=∠D=90°.(1分)
∴∠1+∠2=90°.
∵BF⊥AE,
∴∠AFB=∠1+∠3=90°.
∴∠2=∠3.(2分)
又∵∠D=∠AFB=90°,(3分)
∴△ADE∽△BFA.(4分)
∴[AD/BF=
AE
AB].
∴AB•AD=AE•BF.(5分)
点评:
本题考点: 相似三角形的判定与性质;矩形的性质.
考点点评: 本题考查的是相似三角形的判定与性质,能根据题意得出△ADE∽△BFA是解答此题的关键.