解题思路:(1)连接O1A,由圆O1与x轴切于A,根据切线的性质得到O1A垂直于OA,由OB与AO垂直,根据平面内垂直于同一条直线的两直线平行,得到O1A与OB平行,根据两直线平行内错角相等,得到一对内错角相等,再由O1A=O1B,根据等边对等角可得出一对角相等,等量代换可得出∠ABO1=∠ABO,得证;
(2)作O1E⊥BC于点E,根据垂径定理得到E为BC的中点,由BC的长求出BE的长,再由A的横坐标得出OA的长,即为O1E的长,在直角三角形O1BE中,根据勾股定理求出O1B的长,用OE-BE求出OB的长,在直角三角形AOB中,根据勾股定理即可求出AB的长;
(3)两个结论中,①BM-BN的值不变正确,理由为:在MB上取一点G,使MG=BN,连接AM、AN、AG、MN,由∠ABO1为四边形ABMN的外角,根据圆内接四边形的外角等于它的内对角,可得出∠ABO1=∠NMA,再由∠ABO1=∠ABO,等量代换可得出∠ABO=∠NMA,然后利用同弧所对的圆周角相等可得出∠ABO=∠ANM,等量代换可得出∠NMA=∠ANM,根据等角对等边可得出AM=AN,再由同弧所对的圆周角相等,及OM=BN,利用SAS可得出三角形AMG与三角形ABN全等,根据全等三角形的对应边相等可得出AG=AB,由AO与BG垂直,根据三线合一得到O为BG的中点,根据OB的长求出BG的长,然后BM-BN=BM-MG=BG,由BG为常数得到BM-BN的长不变,得证.
(1)连接O1A,则O1A⊥OA,又OB⊥OA,
∴O1A∥OB,
∴∠O1AB=∠ABO,
又∵O1A=O1B,
∴∠O1AB=∠O1BA,
∴∠ABO1=∠ABO;
(2)作O1E⊥BC于点E,
∴E为BC的中点,
∵BC=8,∴BE=[1/2]BC=4,
∵A(-3,0),
∴O1E=OA=3,
在直角三角形O1BE中,
根据勾股定理得:O1B=
BE2+O1B2=
42+32=5,
∴O1A=EO=5,
∴BO=5-4=1,
在直角三角形AOB中,
根据勾股定理得:AB=
AO2+BO2=
10;
(3)①BM-BN的值不变,理由为:
证明:在MB上取一点G,使MG=BN,连接AM、AN、AG、MN,
∵∠ABO1为四边形ABMN的外角,
∴∠ABO1=∠NMA,又∠ABO1=∠ABO,
∴∠ABO=∠NMA,又∠ABO=∠ANM,
∴∠AMN=∠ANM,
∴AM=AN,
∵∠AMG和∠ANB都为
AB所对的圆周角,
∴∠AMG=∠ANB,
在△AMG和△ANB中,
∵
AM=AN
∠AMG=∠ANB
MG=BN,
∴△AMG≌△ANB(SAS),
点评:
本题考点: 切线的性质;坐标与图形性质;全等三角形的判定与性质;勾股定理;垂径定理.
考点点评: 此题考查了切线的性质,坐标与图形性质,垂径定理,勾股定理,等腰三角形的性质,以及全等三角形的判定与性质.熟练掌握性质及定理是解本题的关键.