救命:怎么解这个微分方程sinx*y''+(y'^2-sin^2x)^(1/2)*y'^2-(cosx)*y'=0, y
(cosx)*y'-sinx*y''=(y'²-sin²x"}}}'>

1个回答

  • ∵sinx*y''+(y'²-sin²x)^(1/2)*y'²-(cosx)*y'=0

    ==>(cosx)*y'-sinx*y''=(y'²-sin²x)^(1/2)*y'²

    ==>[(cosx)*y'-sinx*y'']/y'²=(y'²-sin²x)^(1/2)

    ==>(sinx/y')'=y'[1-(sinx/y')²]^(1/2)

    ==>d(sinx/y')/[1-(sinx/y')²]^(1/2)=dy

    ∴arcsin(sinx/y')=y+C1 (C1是任意常数)

    ∵y(0)=0,y'(0)=1,代入上式得 C1=0

    ∴arcsin(sinx/y')=y

    ==>sinx/y'=siny

    ==>y'siny=sinx

    ==>siny*dy=sinx*dx

    ==>cosy=cosx+C2 (C2是任意常数)

    ∵y(0)=0,y'(0)=1,代入上式得 C2=0

    ∴cosy=cosx ==>y=x

    故原方程在初始条件(y(0)=0,y'(0)=1)下的特解是 y=x.