(1)令x=y=1,则f(1)=f(1)+f(1),∴f(1)=0;
令x=y=-1,则f(1)=f(-1)+f(-1),∴f(-1)=0;
(2)f(x)是偶函数,证明如下
令y=-1,∵f(xy)=f(x)+f(y),∴f(-x)=f(x)+f(-1),
∵f(-1)=0,∴f(-x)=f(x),∵f(x)不恒为0,∴f(x)是偶函数;
(3)∵f(x+1)-f(2-x)≤0,∴f(x+1)≤f(2-x)
∵f(x)是偶函数,∴f(|x+1|)≤f(|2-x|)
∵x>0时,f(x)为增函数,
∴|x+1|≤|2-x|
∴ x≤
1
2
∴满足不等式f(x+1)-f(2-x)≤0的x取值集合为{x| x≤
1
2 }.