如图,已知圆O与圆O'相交于A、B两点,点O在圆O'上,圆O'的弦OC交AB于点D.

2个回答

  • 证明:(1)连接OB.

    ∵OA=OB,

    ∴∠OAB=∠OBA.

    ∵∠OCA=∠OBA,

    ∴∠OAB=∠OCA.

    ∵∠AOC=∠DOA,

    ∴△AOC∽△DOA.

    ∴OA /OD =OC/ OA ,

    ∴OA2=OC•OD.

    (2)∵△AOC∽△DOA,

    ∴AC /OC =DA/ OA .

    同理可得,BC/ OC =DB/ OB .

    ∴AC/ OC +BC /OC =DA /OA +DB/ OB ,

    即(AC+BC)/ OC =AB/ OA .

    ∵AC+BC=根号3OC,OA=r,

    ∴AB=根号3r.