证明:(1)连接OB.
∵OA=OB,
∴∠OAB=∠OBA.
∵∠OCA=∠OBA,
∴∠OAB=∠OCA.
∵∠AOC=∠DOA,
∴△AOC∽△DOA.
∴OA /OD =OC/ OA ,
∴OA2=OC•OD.
(2)∵△AOC∽△DOA,
∴AC /OC =DA/ OA .
同理可得,BC/ OC =DB/ OB .
∴AC/ OC +BC /OC =DA /OA +DB/ OB ,
即(AC+BC)/ OC =AB/ OA .
∵AC+BC=根号3OC,OA=r,
∴AB=根号3r.