f(x)=ax2+bx+c
=a(x^2+b/a)^2+c
=a(x+b/2a)^2+c-b^2/4a
=a(x+b/2a)^2+(4ac-b^2)/(4a)
因为a>0
所以当x=-b/2a时,f(x)有最小值(4ac-b^2)/(4a)
即f(x)值域为[(4ac-b^2)/(4a),正无穷)
f(x)=ax2+bx+c
=a(x^2+b/a)^2+c
=a(x+b/2a)^2+c-b^2/4a
=a(x+b/2a)^2+(4ac-b^2)/(4a)
因为a>0
所以当x=-b/2a时,f(x)有最小值(4ac-b^2)/(4a)
即f(x)值域为[(4ac-b^2)/(4a),正无穷)