f(x)=cos^wx+√3sinwxcoswx=[1+cos(2wx)]/2+√3(2sinwxcoswx)/2
=cos(2wx)/2+√3sin(2wx)/2+1/2=sin(2wx+π/6)+1/2
T=2π/2w=π/w=π
w=1
f(x)=sin(2x+π/6)+1/2
f(2π/3)=sin(3π/2)+1/2= -1/2
f(x)=cos^wx+√3sinwxcoswx=[1+cos(2wx)]/2+√3(2sinwxcoswx)/2
=cos(2wx)/2+√3sin(2wx)/2+1/2=sin(2wx+π/6)+1/2
T=2π/2w=π/w=π
w=1
f(x)=sin(2x+π/6)+1/2
f(2π/3)=sin(3π/2)+1/2= -1/2