(1)MN=AM+CN,证明见解析(2)MN=CN-AM
(1)MN=AM+CN。证明如下:
如图,∵BC∥AD,AB=BC=CD,∴梯形ABCD是等腰梯形。
∴∠A+∠BCD=180°。
把△ABM绕点B顺时针旋转到△CBM′,
则AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,
∴∠BCM′+∠BCD=180°。∴点M′、C、M三点共线。
∵∠MBN=
∠ABC,
∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=
∠ABC。
∴∠MBN=∠M′BN。
在△BMN和△BM′N中,∵ BM="BM′" ,∠MBN=∠M′BN, BN=BN,
∴△BMN≌△BM′N(SAS),∴MN=M′N。
又∵M′N=CM′+CN=AM+CN,∴MN=AM+CN。
(2)MN=CN-AM。
(1)先判定梯形ABCD是等腰梯形,根据等腰梯形的性质可得∠A+∠BCD=180°,再把△ABM绕点B顺时针旋转90°,点A与点C重合,点M到达点M′,根据旋转变换的性质,可得AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,然后证明M′、C、N三点共线,再利用“边角边”证明△BMN和△BM′N全等,然后根据全等三角形对应边相等即可得证。
(2)在∠CBN内部作∠CBM′=∠ABM交CN于点M′,然后证明∠C=∠BAM,再利用“角边角”证明△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,再证明∠MBN=∠M′BN,利用“边角边”证明△MBN和△M′BN全等,根据全等三角形对应边相等可得MN=M′N,从而得到MN=CN-AM:
如图,作∠CBM′=∠ABM交CN于点M′,
∵∠ABC+∠ADC=180°,∴∠BAD+∠C=360°-180°=180°。
又∵∠BAD+∠BAM=180°,∴∠C=∠BAM。
在△ABM和△CBM′中,∵∠CBM′=∠ABM′ ,AB="BC" ,∠C=∠BAM,
∴△ABM≌△CBM′(ASA)。∴AM=CM′,BM=BM′。
∵∠MBN=
∠ABC,
∴∠M′BN=∠ABC-(∠ABN+∠CBM′)=∠ABC-(∠ABN+∠ABM)
=∠ABC-∠MBN=
∠ABC。
∴∠MBN=∠M′BN。
在△MBN和△M′BN中,∵BM="BM′" ,∠MBN=∠M′BN, BN=BN,
∴△MBN≌△M′BN(SAS)。∴MN=M′N。
∵M′N=CN-CM′=CN-AM,∴MN=CN-AM。