g(x)=-(2^x+1)/2,令t=2^x,t是单调函数,t>0,g(2x)-a*g(x)=-(t^2+1)/2+a/2*t+a/2=-1/2(t^2-at-a+1)=0,有唯一实数解相当于有唯一正根或两正重根,(1)唯一正根时,分一正一负根即
-a+10,(2)两正重根时,判别式=a^2+4a-4=0且a>0,综合以上三种情况,a的取值范围是a=-2+2*根号下(2)或a>=1.
a=2,f(x)=2-2/(2^x+1)恒>0,而m、n
g(x)=-(2^x+1)/2,令t=2^x,t是单调函数,t>0,g(2x)-a*g(x)=-(t^2+1)/2+a/2*t+a/2=-1/2(t^2-at-a+1)=0,有唯一实数解相当于有唯一正根或两正重根,(1)唯一正根时,分一正一负根即
-a+10,(2)两正重根时,判别式=a^2+4a-4=0且a>0,综合以上三种情况,a的取值范围是a=-2+2*根号下(2)或a>=1.
a=2,f(x)=2-2/(2^x+1)恒>0,而m、n