设A(X1,y1).B(x2,y2)因为AB在椭圆上,有(x1)^2/9+(y1)^2/4=1 (x2)^2/9+(y2)^2/4=1 P(1.1)为AB中点,有(x1+x2)/2=1 (y1+y2)/2=1 即 x1+x2=2 y1+y2
即(x1)^2/9+(y1)^2/4=(x2)^2/9+(y2)^2/4 有(x1+x2)(x1-x2)/9=-(y1+y2)(y1-y2)/4 k(斜率)=-4/9(x1+x2)/(y1+y2) = -4/9 ×1/1 直线为y=-4/9(x-1)+1
设A(X1,y1).B(x2,y2)因为AB在椭圆上,有(x1)^2/9+(y1)^2/4=1 (x2)^2/9+(y2)^2/4=1 P(1.1)为AB中点,有(x1+x2)/2=1 (y1+y2)/2=1 即 x1+x2=2 y1+y2
即(x1)^2/9+(y1)^2/4=(x2)^2/9+(y2)^2/4 有(x1+x2)(x1-x2)/9=-(y1+y2)(y1-y2)/4 k(斜率)=-4/9(x1+x2)/(y1+y2) = -4/9 ×1/1 直线为y=-4/9(x-1)+1