(1)根据已知条件
sn^2-s(n-1)^2=an^3,又因为sn^2-s(n-1)^2=(sn+s(n-1))(sn-s(n-1))=(sn+sn-an)(sn-s(n-1))
=an(2sn-an),所以an^3=an(2sn-an),得到an^2=2sn-an
(2)由上面的求解可知:
sn=(an^2+an)/2,那么an=sn-s(n-1)=(an^2+an)/2-(a(n-1)^2+a(n-1))/2,化简得
an-a(n-1)=1,所以an是以公差为1,首相为1的等差数列,即an=n