若3²×9的2a+1次方÷27的a+1平方=81
3^2*9^(2a+1)/27^(a+1)=81
3^2*(3^2)^(2a+1)/(3^3)^(a+1)=81
3^2*3^(4a+2)/3^(3a+3)=81
3^(4a+4)/3^(3a+3)=81
3^(4a+4-3a-3)=81
3^(a+1)=3^4
a+1=4
a=3
若3²×9的2a+1次方÷27的a+1平方=81
3^2*9^(2a+1)/27^(a+1)=81
3^2*(3^2)^(2a+1)/(3^3)^(a+1)=81
3^2*3^(4a+2)/3^(3a+3)=81
3^(4a+4)/3^(3a+3)=81
3^(4a+4-3a-3)=81
3^(a+1)=3^4
a+1=4
a=3