(1)设等差数列an=a1+(n-1)d
s1=a1 s2=2a1+d s4=4a1+6d
s1,s2,s4成等比数列
所以S2^2=S1*S4 即(2a1+d)^2=a1(4a1+6d)
4a1^2+4a1d+d^2=4a1^2+6a1d
d^2=2a1d
d=2a1
整理得:d=2a1
公比q=s2/s1=(2a1+d )/a1=4
(2)∵s2=2a1+d=4a1=4
∴a1=1
∴d=2a1=2
∴an=1+(n-1)*2=2n-1
(1)设等差数列an=a1+(n-1)d
s1=a1 s2=2a1+d s4=4a1+6d
s1,s2,s4成等比数列
所以S2^2=S1*S4 即(2a1+d)^2=a1(4a1+6d)
4a1^2+4a1d+d^2=4a1^2+6a1d
d^2=2a1d
d=2a1
整理得:d=2a1
公比q=s2/s1=(2a1+d )/a1=4
(2)∵s2=2a1+d=4a1=4
∴a1=1
∴d=2a1=2
∴an=1+(n-1)*2=2n-1