设y=f(x)在[a,b]上连续,f(a)=f(b),则在(a,b)内至少存在一点ε∈(a,b),使得f'(ε)=0.对
1个回答
错
缺了:在(a,b)内可导.
相关问题
设f(x)在[a,b]上连续,证明:至少存在一点ε∈[a,b],使f(ε)=[f(a)+f(b)]/2
几道微积分的判断题,1、设y=f(x)在[a,b]上连续,f(a)=f(b),则在(a,b)内至少存在一点ε∈(a,b)
设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε使得εf '(ε)+f(ε)=
设f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f(ξ)−f(a)b−ξ=f′(ξ
设f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明:至少存在一点ξ∈(a,b),使得f(ξ)=ξ.
一道函数连续的题目若函数f(x)在[a,b]上连续,且a^2≤f(x)≤b^2,证明:在[a,b]上至少有一点ε,使得f
设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=0.试证:在(a,b)内存在一点n,使得f
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在ξ∈(a,b)使得f'(ξ)+f'
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
设f(x)在[a,b]上连续,且f(x)>0,证明:至少存在一点ξ∈(a,b),使得∫f(x)dx=∫f(x)dx.(左