已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重

1个回答

  • (1)

    OC = AB = √[(-2 - 0)² + (0 - 2)²] = 2√2

    C(2√2, 0)

    抛物线过A(-2, 0), C(2√2, 0), 可表达为y = -(x + 2)(x - 2√2) = -x² - 2(1- √2)x + 4√2

    (2)

    AO =OB, ∠OAE = 45˚

    ∠BEF = 180˚ - ∠OEF - ∠AEO = 180˚ - 45˚ - ∠AEO = 135˚ - ∠AEO (180˚: 平角)

    ∠AOE = 180˚ - ∠OAE - ∠AEO = 180˚ - 45˚ - ∠AEO = 135˚ - ∠AEO (180˚: ∆AOE内角和)

    ∠BEF = ∠AOE

    (3)

    AB的方程: x/(-2) + y/2 = 1, y = 2 + x

    △EOF为等腰三角形时, 显然∠EOF不可能为90˚, 有两种可能:EF = EO或FE = FO

    (i) EF = EO

    ∠OEF的平分线与OF垂直,而且平分OF, 此时平分线与x轴平行, OE, EF的斜率显然互为相反数

    设E(e, 2 + e), 则F(0, 4 + 2e), -2 < e < 0

    OE的斜率p = tan(45°/2) = sin45°/(1 + cos45°) = √2 - 1

    EF的斜率q = -q = 1 - √2

    OE的方程: y = (1 - √2)x

    E(-√2, √2)

    (ii)FE = FO

    ∠OEF = ∠FOE = 45°, EF与OF垂直

    OE的斜率 = tan(90° + 45°) = -1

    OE的方程: y = -x

    与AB的交点为E(-1, 1)

    (4)

    (3)中的(ii)的结果EF与x轴平行, 这里不考虑.

    E(-√2, √2), F(0, 2√2)

    EF的方程: y = (√2 - 1)x + 2√2

    y = 0, x = -2(√2 + 2), D(-2(√2 + 2), 0)

    是△EDG面积的(2

    2

    +1)倍? 这是什么?