证明:设AD与EF交于M.
∵AD⊥EF
∴∠ADE=∠ADF=90°
∵∠EAD=∠FAD
∴∠AEF=∠AFE
∵∠AFE=∠CFH
∴∠AEF=∠CFH
∵∠AEF=∠B+∠H
∠CFH=∠ACB-∠H
∴∠B+∠H=∠ACB-∠H
∴∠H=1/2(∠ACB-∠B)
证明:设AD与EF交于M.
∵AD⊥EF
∴∠ADE=∠ADF=90°
∵∠EAD=∠FAD
∴∠AEF=∠AFE
∵∠AFE=∠CFH
∴∠AEF=∠CFH
∵∠AEF=∠B+∠H
∠CFH=∠ACB-∠H
∴∠B+∠H=∠ACB-∠H
∴∠H=1/2(∠ACB-∠B)