x^2+y^2=1
x=m-√3y,即:(m-√3y)^2+y^2=1
即:4y^2-2√3my+m^2-1=0
即:y1=(√3m+sqrt(4-m^2))/4,y2=(√3m-sqrt(4-m^2))/4
故:x1=m-√3y1,x2=m-√3y2
即AB中点坐标:x0=(x1+x2)/2=m-√3(y1+y2)/2
=m-3m/4=m/4
y0=(y1+y2)/2=√3m/4
即:AB中点坐标(m/4,√3m/4)
OA+OB=2(m/4,√3m/4)=(m/2,√3m/2)
与OA+OB共线的向量:k(m/2,√3m/2)
-2