已知数列{an}满足前N项和sn=n平方+1数列{bn}满足bn=2/an +1且前n项和为Tn 设T 2n+1 -Tn

2个回答

  • (1)

    ∵数列{an}满足前N项和sn=n平方+1

    ∴Sn=n^2+1

    S(n-1)=(n-1)^2+1

    An=Sn-S(n-1)

    =n^2+1-[(n-1)^2+1]

    =2n-1

    A1=S1=2

    Bn=2/An +1=2/(2n-1)+1=(2n+1)/(2n-1)

    B1=2/A1+1=2

    Bn是一个首项为2,通项为(2n+1)/(2n-1) 的数列

    (2)

    Cn=T(2n+1)-Tn

    要判断Cn的单调性只要判断Cn-C(n-1)是大于0还是小于0即可

    Cn-C(n-1)=T(2n+1)-Tn-[T(2n-1)-T(n-1)]

    =[T(2n+1)-T(2n-1)]-[Tn-T(n-1)]

    =B(2n+1)+B(2n)-Bn

    =[2(2n+1)+1]/[2(2n+1)-1]+[2(2n)+1]/[2(2n)-1]-[(2n+1)/(2n-1)]

    =1+2[1/(4n+1)+1/(4n-1)-1/(2n-1)]

    ∵1/(4n+1)+1/(4n-1)-1/(2n-1)

    = (1-8n)/[(4n+1)*(4n-1)*(2n-1)]

    又∵1-8n0,4n-1>0,2n-1>0

    ∴(1-8n)/[(4n+1)*(4n-1)*(2n-1)]