(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(-x,-y)在函数f(x)的图象上,
即-y=log a(-x+1),则 y= - log a (1-x)= log a
1
1-x
∴ g(x)= log a
1
1-x
(2)f(x)+g(x)≥m 即 log a (1+x)+ log a
1
1-x ≥m ,
也就是 log a
1+x
1-x ≥m 在[0,1)上恒成立.
设 h(x)= log a
1+x
1-x ,x∈[0,1) ,
则 h(x)= log a (-
x+1
x-1 ) = log a (-
x-1+2
x-1 ) = log a (-1-
2
x-1 )
由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,
只需h(x) min≥m在[0,1)上成立,即m≤0.
m的取值范围是(-∞,0]