用定义法:
根据定义域 (-∞,-1) ,令x1<x2<-1
f(x2)-f(x1) = (x2²+2x2) - (x1²+2x1)
= (x2²-x1²) + (2x2-2x1)
= (x2+x1)(x2-x1)+2(x2-x1)
= (x2-x1)(x2+x1+2)
∵x1<x2<-1
∴(x2-x1)>0,(x2+x1+2)<0
∴f(x2)-f(x1) = (x2-x1)(x2+x1+2)<0
∴f(x2)<f(x1)
得证.
用定义法:
根据定义域 (-∞,-1) ,令x1<x2<-1
f(x2)-f(x1) = (x2²+2x2) - (x1²+2x1)
= (x2²-x1²) + (2x2-2x1)
= (x2+x1)(x2-x1)+2(x2-x1)
= (x2-x1)(x2+x1+2)
∵x1<x2<-1
∴(x2-x1)>0,(x2+x1+2)<0
∴f(x2)-f(x1) = (x2-x1)(x2+x1+2)<0
∴f(x2)<f(x1)
得证.