急求高中数学中三角恒等变换这一章中的所有公式!

3个回答

  • ·平方关系:

    sin^2α+cos^2α=1

    1+tan^2α=sec^2α

    1+cot^2α=csc^2α

    ·积的关系:

    sinα=tanα×cosα

    cosα=cotα×sinα

    tanα=sinα×secα

    cotα=cosα×cscα

    secα=tanα×cscα

    cscα=secα×cotα

    ·倒数关系:

    tanα ·cotα=1

    sinα ·cscα=1

    cosα ·secα=1

    商的关系:

    sinα/cosα=tanα=secα/cscα

    cosα/sinα=cotα=cscα/secα

    直角三角形ABC中,

    角A的正弦值就等于角A的对边比斜边,

    余弦等于角A的邻边比斜边

    正切等于对边比邻边,

    ·[1]三角函数恒等变形公式

    ·两角和与差的三角函数:

    cos(α+β)=cosα·cosβ-sinα·sinβ

    cos(α-β)=cosα·cosβ+sinα·sinβ

    sin(α±β)=sinα·cosβ±cosα·sinβ

    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

    ·三角和的三角函数:

    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

    ·辅助角公式:

    Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中

    sint=B/(A²+B²)^(1/2)

    cost=A/(A²+B²)^(1/2)

    tant=B/A

    Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B

    ·倍角公式:

    sin(2α)=2sinα·cosα=2/(tanα+cotα)

    cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)

    tan(2α)=2tanα/[1-tan²(α)]

    ·三倍角公式:

    sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)

    cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)

    tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)

    ·半角公式:

    sin(α/2)=±√((1-cosα)/2)

    cos(α/2)=±√((1+cosα)/2)

    tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

    ·降幂公式

    sin²(α)=(1-cos(2α))/2=versin(2α)/2

    cos²(α)=(1+cos(2α))/2=covers(2α)/2

    tan²(α)=(1-cos(2α))/(1+cos(2α))

    ·万能公式:

    sinα=2tan(α/2)/[1+tan²(α/2)]

    cosα=[1-tan²(α/2)]/[1+tan²(α/2)]

    tanα=2tan(α/2)/[1-tan²(α/2)]

    ·积化和差公式:

    sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

    cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

    cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

    sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

    ·和差化积公式:

    sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

    sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]