1.
f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a
=√3/2sin2x+1/2cos2x+√3/2sin2x-1/2cos2x+cos2x+a
=√3sin2x+cos2x+a
=2sin(2x+π/6)+a
所以f(x)的最小正周期2π/2=π
2.
sinx的单调递增区间[2kπ-π/2,2kπ+π/2]
所以2kπ-π/2
1.
f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a
=√3/2sin2x+1/2cos2x+√3/2sin2x-1/2cos2x+cos2x+a
=√3sin2x+cos2x+a
=2sin(2x+π/6)+a
所以f(x)的最小正周期2π/2=π
2.
sinx的单调递增区间[2kπ-π/2,2kπ+π/2]
所以2kπ-π/2