等差数列{an},{bn}的前n项和分别为Sn,Tn,且Sn/Tn=(2n-1)/(3n+2),则a5/b5
2个回答
S9=9(a1+a9)/2=9a5
T9=9(b1+b9)/2=9b5
所以 a5/b5=S9/T9=17/29
相关问题
等差数列{an},{bn}的前n项和分别为Sn,Tn,Sn/Tn=2n/3n+1则a3/b5
等差数列{an}和{bn}的前n项和分别为Sn和Tn,且Sn/Tn=2n/3n+1,则a3/b5=
设Sn ,Tn分别为等差数列{an}{bn}的前n项和,Sn/Tn=(5n-2)/(n+3),则an/bn=?
等差数列{an}和{bn}前n项和为sn,Tn且sn/tn=2n+1/n+2求a5/b5
等差数列{an}{bn},前n项和分别为Sn,Tn,Sn/Tn=n+4/4n+3,则a5/b5=?
等差数列an,bn的前n项和Sn,Tn满足Sn/Tn=3n+1/2n+5,则a5+b3=
等差数列{an},{bn}的前n项和分别为Sn,Tn,且Sn/Tn=(2n+1)/(3n+2),则A12/B15=
等差数列{an},{bn},的前n项和分别为Sn,Tn且Sn/Tn=(3n-1)/(2n+3)则a8/b8=
等差数列{an}{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求a5/b5=多少
等差数列(an),(bn)的前n项和为Sn,Tn,且Sn/Tn=2n/3n+1,则a8/b8=?