设直线 L的方程为 y=k(x-1);
|AB|²=(Xa-Xb)²+(Ya-Yb)²=(1+k²)(Xa-Xb)²=(1+k²)[(Xa+Xb)²-4Xa*Xb];
将 L:y=k(x-1) 代入椭圆方程可得到 A、B 点的坐标关系:(x²/2)+[k(x-1)]²/3=1;
整理上述方程 (3+2k²)x²-4k²x+2k²-6=0;所以 Xa+Xb=4k²/(3+2k²),Xa*Xb=(2k²-6)/(3+2k²);
∴ |AB|²=(1+k²){[4k²/(3+2k²)]²-4*(2k²-6)/(3+2k²)}=(1+k²)(24k²+72)/(3+2k²)²
=6[(3+2k²)²+2(3+2k²)-3]/(3+2k²)²
=6(1+2t-3t²)=6…………0