解题思路:(1)根据等边三角形的性质和三角形的内角和定理求出∠D=∠ECB=30°,∠ABC=60°,求出∠D=∠DEB=30°,推出DB=BE=AE即可得到答案;
(2)作EF∥BC,证出等边三角形AEF,再证△DBE≌△EFC即可得到答案;
(3)分为两种情况:一是E在AB的延长线上,D在线段CB的延长线上,求出CD=3,二是E在BA的延长线上,D在线段BC的延长线上,求出CD=1,即可得到答案.
(1)答案为:=.
(2)证明:在等边△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,
∵EF∥BC,
∴∠AEF=∠AFE=60°=∠BAC,
∴AE=AF=EF,
∴AB-AE=AC-AF,
即BE=CF,
∵∠ABC=∠EDB+∠BED=60°,
∠ACB=∠ECB+∠FCE=60°,
∵ED=EC,
∴∠EDB=∠ECB,
∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∴∠BED=∠FCE,
∴△DBE≌△EFC,
∴DB=EF,
∴AE=BD.
(3)①∵AB=1,AE=2,△ABC是等边三角形,B是AE的中点,
∴AB=AC=BC=1,易得,△ACE是Rt△,
∴∠ACE=90°,
∴∠D=∠ECB=30°,∠DBE=∠ABC=60°,即△DEB是直角三角形.
∴BD=2(30°所对的边等于斜边的一半),即CD=1+2=3.
另法:∵EF∥CD
∴∠EFC=∠EBD=180°-60°
∵EC=ED
∴∠D=∠ECD,
∴∠DEB=∠ECF=60°-∠ECD=60°-∠D
∴△EFC≌△EDB
∴EF=BD
又∵∠A=∠AEF
∴AE=2
∵BC=1
∴CD=3
②∵AE=2,BA=BC=1,
∴BE=3,作EF⊥CD交CD于点F,则在Rt△EFB中,∠BEF=90°-60°=30°,
∴BF=[1/2]BE=[1/2]×(1+3)=1.5,
∴CF=BF-BC=1.5-1=0.5,
而ED=EC,EF⊥CD,
∴DF=CF(三线合一),
∴CD=2CF=1.
答:CD的长是1或3.
点评:
本题考点: 等边三角形的判定与性质;平行线的性质;全等三角形的判定与性质.
考点点评: 本题主要考查对全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.