∵抛物线y=ax²+bx+c对称轴为x=-2,在x轴上截得的线段长为 2√2,
∴它与X轴的交点坐标是(-2-√2)、(-2+√2);
设抛物线的解析式是y=a(x+2+√2)(x+2-√2)=a(x²+4x+2)
∵抛物线y=ax²+bx+c经过点(-1,-1),
∴a[(-1)²+4×(-1)+2]=-1
-a=-1
a=1
∴抛物线的解析式是y=x²+4x+2
∵抛物线y=ax²+bx+c对称轴为x=-2,在x轴上截得的线段长为 2√2,
∴它与X轴的交点坐标是(-2-√2)、(-2+√2);
设抛物线的解析式是y=a(x+2+√2)(x+2-√2)=a(x²+4x+2)
∵抛物线y=ax²+bx+c经过点(-1,-1),
∴a[(-1)²+4×(-1)+2]=-1
-a=-1
a=1
∴抛物线的解析式是y=x²+4x+2